Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 32: 47-54, Mar. 2018. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1022746

RESUMO

Background: Cathepsin C (CTSC) (dipeptidyl peptidase I, DPPI), is a member of the papain superfamily of cysteine proteases and involves in a variety of host reactions. However, the information of CTST in Chinese giant salamander (Andrias davidianus), an amphibian species with important evolutionary position and economic values, remained unclear. Results: The full-length salamander CTSC cDNA contained a 96 bp of 5'-UTR, a 1392 bp of ORF encoding 463 amino acids, and a 95 bp of 3'-UTR. The salamander CTSC possessed several sequence features similar to other reported CTSCs such as a signal peptide, a propeptide and a mature peptide. The active site triad of Cys, His and Asn were also found existing in salamander CTSC. Salamander CTSC mRNA was constitutively expressed in all the examined tissues with significantly variant expression level. The highest expression of CTSC was in intestine, followed with stomach, spleen, lung and brain. Following Aeromonas hydrophila infection for 12 h, salamander CTSC was significantly up-regulated in several tissues including lung, spleen, brain, kidney, heart, stomach and skin. Conclusion: CTSC plays roles in the immune response to bacterial infection, which provided valuable information for further studying the functions of CTSC in salamander.


Assuntos
Animais , Urodelos/genética , Urodelos/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Catepsina C/imunologia , Urodelos/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Clonagem Molecular , Aeromonas hydrophila/fisiologia , Análise de Sequência , DNA Complementar , Catepsina C/genética , Catepsina C/metabolismo , Transcrição Reversa , Imunidade Inata/genética
2.
Electron. j. biotechnol ; 31: 93-99, Jan. 2018. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1022150

RESUMO

Background: Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the host innate immune system that are involved in the immune defense against bacterial pathogens. PGRPs have been characterized in several fish species. The PGN-binding ability is important for the function of PGRPs. However, the PGRP-PGN interaction mechanism in fish remains unclear. In the present study, the 3-D model of a long PGRP of half-smooth tongue sole (Cynoglossus semilaevis) (csPGRP-L), a marine teleost with great economic value, was constructed through the comparative modeling method, and the key amino acids involved in the interaction with Lys-type PGNs and Dap-type PGNs were analyzed by molecular dynamics and molecular docking methods. Results: csPGRP-L possessed a typical PGRP structure, consisting of five ß-sheets and four α-helices. Molecular docking showed that the van der Waals forces had a slightly larger contribution than Coulombic interaction in the csPGRP-L-PGN complex. Moreover, the binding energies of csPGRP-L-PGNs computed by MM-PBSA method revealed that csPGRP-L might selectively bind both types of MTP-PGNs and MPP-PGNs. In addition, the binding energy of each residue of csPGRP-L was also calculated, revealing that the residues involved in the interaction with Lys-type PGNs were different from that with Dap-type PGNs. Conclusions: The 3-D structure of csPGRP-L possessed typical PGRP structure and might selectively bind both types of MTP- and MPP-PGNs, which provided useful insights to understanding the functions of fish PGRPs.


Assuntos
Animais , Língua/imunologia , Linguados/imunologia , Linguados/metabolismo , Sítios de Ligação , Linguados/genética , Peptidoglicano , Proteínas de Transporte , Receptores Toll-Like , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA